Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
MethodsX ; 8: 101291, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34434811

RESUMO

All studies focused on the evaluation of paleoecological variability over geological time must be linked to a specific age or time interval, which can be defined using different time scales (biostratigraphic, chronostratigraphic, geochronological or orbital). Therefore, integrated time scales are essential to allow comparisons of data from different locations and/or to assess evolutionary and other events through time. Here we use a new method to update a Paleogene magnetobiochronological time scale, with the following contributions:•The update of the Paleogene magnetobiochronological scale was made by graphical correlation with new age models and adding calcareous nannoplankton and planktonic foraminiferal biozones from different authors.•An excel file structure was proposed to plot any kind of data in MATLAB software, as long as they are associated with some of the scales shown in our updated version of Paleogene magnetobiochronology.•The excel file structure facilitates the analysis of long-term trends of taxonomic groups throughout the Paleogene, and of their evolution in a period characterized by intense climate variability.

2.
Science ; 367(6475): 266-272, 2020 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-31949074

RESUMO

The cause of the end-Cretaceous mass extinction is vigorously debated, owing to the occurrence of a very large bolide impact and flood basalt volcanism near the boundary. Disentangling their relative importance is complicated by uncertainty regarding kill mechanisms and the relative timing of volcanogenic outgassing, impact, and extinction. We used carbon cycle modeling and paleotemperature records to constrain the timing of volcanogenic outgassing. We found support for major outgassing beginning and ending distinctly before the impact, with only the impact coinciding with mass extinction and biologically amplified carbon cycle change. Our models show that these extinction-related carbon cycle changes would have allowed the ocean to absorb massive amounts of carbon dioxide, thus limiting the global warming otherwise expected from postextinction volcanism.


Assuntos
Ciclo do Carbono , Extinção Biológica , Erupções Vulcânicas , Dióxido de Carbono/análise , Aquecimento Global , México , Modelos Teóricos
3.
Proc Natl Acad Sci U S A ; 116(45): 22500-22504, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31636204

RESUMO

Mass extinction at the Cretaceous-Paleogene (K-Pg) boundary coincides with the Chicxulub bolide impact and also falls within the broader time frame of Deccan trap emplacement. Critically, though, empirical evidence as to how either of these factors could have driven observed extinction patterns and carbon cycle perturbations is still lacking. Here, using boron isotopes in foraminifera, we document a geologically rapid surface-ocean pH drop following the Chicxulub impact, supporting impact-induced ocean acidification as a mechanism for ecological collapse in the marine realm. Subsequently, surface water pH rebounded sharply with the extinction of marine calcifiers and the associated imbalance in the global carbon cycle. Our reconstructed water-column pH gradients, combined with Earth system modeling, indicate that a partial ∼50% reduction in global marine primary productivity is sufficient to explain observed marine carbon isotope patterns at the K-Pg, due to the underlying action of the solubility pump. While primary productivity recovered within a few tens of thousands of years, inefficiency in carbon export to the deep sea lasted much longer. This phased recovery scenario reconciles competing hypotheses previously put forward to explain the K-Pg carbon isotope records, and explains both spatially variable patterns of change in marine productivity across the event and a lack of extinction at the deep sea floor. In sum, we provide insights into the drivers of the last mass extinction, the recovery of marine carbon cycling in a postextinction world, and the way in which marine life imprints its isotopic signal onto the geological record.


Assuntos
Ciências da Terra/história , Água do Mar/química , Ácidos/análise , Animais , Ciclo do Carbono , Isótopos de Carbono/análise , Isótopos de Carbono/metabolismo , Planeta Terra , Foraminíferos/química , Foraminíferos/metabolismo , Fósseis/história , História Antiga , Concentração de Íons de Hidrogênio , Oceanos e Mares
4.
PLoS One ; 13(2): e0193167, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29474429

RESUMO

The early Eocene greenhouse world was marked by multiple transient hyperthermal events. The most extreme was the Paleocene-Eocene Thermal Maximum (PETM, ~56 Ma), linked to the extinction of the globally recognised deep-sea benthic foraminiferal Velasco fauna, which led to the development of early Eocene assemblages. This turnover has been studied at high resolution, but faunal development into the later early Eocene is poorly documented. There is no widely accepted early Eocene equivalent of the Late Cretaceous-Paleocene Velasco fauna, mainly due to the use of different taxonomic concepts. We compiled Ypresian benthic foraminiferal data from 17 middle bathyal-lower abyssal ocean drilling sites in the Pacific, Atlantic and Indian Oceans, in order to characterise early Eocene deep-sea faunas by comparing assemblages across space, paleodepth and time. Nuttallides truempyi, Oridorsalis umbonatus, Bulimina trinitatensis, the Bulimina simplex group, the Anomalinoides spissiformis group, pleurostomellids, uniserial lagenids, stilostomellids and lenticulinids were ubiquitous during the early Eocene (lower-middle Ypresian). Aragonia aragonensis, the Globocassidulina subglobosa group, the Cibicidoides eocaenus group and polymorphinids became ubiquitous during the middle Ypresian. The most abundant early Ypresian taxa were tolerant to stressed or disturbed environments, either by opportunistic behavior (Quadrimorphina profunda, Tappanina selmensis, Siphogenerinoides brevispinosa) and/or the ability to calcify in carbonate-corrosive waters (N. truempyi). Nuttallides truempyi, T. selmensis and other buliminids (Bolivinoides cf. decoratus group, Bulimina virginiana) were markedly abundant during the middle Ypresian. Contrary to the long-lived, highly diverse and equitable Velasco fauna, common and abundant taxa reflect highly perturbed assemblages through the earliest Ypresian, with lower diversity and equitability following the PETM extinction. In contrast, the middle Ypresian assemblages may indicate a recovering fauna, though to some extent persistently disturbed by the lower-amplitude Eocene hyperthermals (e.g., Eocene Thermal Maximum 2 and 3). We propose the name 'Walvis Ridge fauna' for future reference to these Ypresian deep-sea benthic foraminiferal assemblages.


Assuntos
Organismos Aquáticos , Fósseis , Efeito Estufa , Animais , Organismos Aquáticos/classificação , Organismos Aquáticos/fisiologia
5.
Proc Natl Acad Sci U S A ; 109(3): 728-32, 2012 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-22207626

RESUMO

An asteroid impact at the end of the Cretaceous caused mass extinction, but extinction mechanisms are not well-understood. The collapse of sea surface to sea floor carbon isotope gradients has been interpreted as reflecting a global collapse of primary productivity (Strangelove Ocean) or export productivity (Living Ocean), which caused mass extinction higher in the marine food chain. Phytoplankton-dependent benthic foraminifera on the deep-sea floor, however, did not suffer significant extinction, suggesting that export productivity persisted at a level sufficient to support their populations. We compare benthic foraminiferal records with benthic and bulk stable carbon isotope records from the Pacific, Southeast Atlantic, and Southern Oceans. We conclude that end-Cretaceous decrease in export productivity was moderate, regional, and insufficient to explain marine mass extinction. A transient episode of surface ocean acidification may have been the main cause of extinction of calcifying plankton and ammonites, and recovery of productivity may have been as fast in the oceans as on land.


Assuntos
Organismos Aquáticos/crescimento & desenvolvimento , Extinção Biológica , Biodiversidade , Isótopos de Carbono , Foraminíferos/crescimento & desenvolvimento , Geografia , Fatores de Tempo
6.
Science ; 327(5970): 1214-8, 2010 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-20203042

RESUMO

The Cretaceous-Paleogene boundary approximately 65.5 million years ago marks one of the three largest mass extinctions in the past 500 million years. The extinction event coincided with a large asteroid impact at Chicxulub, Mexico, and occurred within the time of Deccan flood basalt volcanism in India. Here, we synthesize records of the global stratigraphy across this boundary to assess the proposed causes of the mass extinction. Notably, a single ejecta-rich deposit compositionally linked to the Chicxulub impact is globally distributed at the Cretaceous-Paleogene boundary. The temporal match between the ejecta layer and the onset of the extinctions and the agreement of ecological patterns in the fossil record with modeled environmental perturbations (for example, darkness and cooling) lead us to conclude that the Chicxulub impact triggered the mass extinction.


Assuntos
Extinção Biológica , Fósseis , Planetas Menores , Animais , Sedimentos Geológicos , México
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...